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SECTION I

INTRODUCTION

Boundary element method (B.E.M) solutions to seven representative two-

dimensional heat conduction problems are presented. The steady heat

conduction through an infinite rectangular prism is the first case

discussed. Each of the next six cases present increasingly more complex

governing equations and boundary conditions. The discussion culminates in the

examination of heat conduction through an infinite circular prism with heat

radiated from its surface. The fundamental solution is derived for each class

of governing equations and its implementation is discussed for each specific

case. The time dependent problems are successfully solved via the Laplace

transform method. In all cases excellent results are achieved using very few

grid points.

This report represents the preliminary research in using the B.E.M. to

study the non-linear coupled partial differential equations associated with

plastic wave propagation. Its intent is to expose the analytical and

implementational difficulties associated with application of boundary element

methods to transient problems.
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SECTION II

THE BOUNDARY ELEMENT METHOD

A two-dimensional linear differential operator will be used to introduce

the concepts behind the boundary element method. There is no loss of

generality in specifying a two-dimensional operator since the three-

dimensional development is identical.

L(u) = (1)

and u = f on r 1  (2a)

on r2  (2b)

where r = 1 + r12 is the bounding curve of surface B (Figure 1). If the idea

that there is a fundamental solution associated Equation 1 is accepted, then

the boundary element method can be developed following Rizzo (Reference 1), the

solution to Equation 1 can be written as

_ u(p) = - fr u(Q). (p,Q)dl + JI G(p,Q)-u(Q)dt - B(p,Q)G(pQ)da + W(p) (3)
uP r2 1)1nG(,f ar fB

where

W(P)= - Q)-(p,Q)d1 + fr g(Q)G(pQ)dt.
r1 f(~n2

r 2 r

mdu= u=f

B

Figure 1. General Two-Dimensional Domain
2
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Here, p is any point in B, Q is any point on r, di. is a differential arc length

element and da is a differential surface element. An integral equation for

the unknown u(Q) and can be obtained through the limiting process

lim u(p) where P is any point on the bounding curve. This process yields
p4P

cu(P) = - f u(Q)-!-(P,Q)d t + fr G(P,Q)-n(Q)d1- fBO(P,Q)G(P,Q)da + W(P) (4)
cuP r2 1nri b

with

W(P) = - 1P,Q)d + fr2 g(Q)G(P,Q)dLt.

where c depends on the surface roughness and the singularity contained in G.

It is now possible to find the unknown functions u(Q) andS-!(Q). The

substitution of these functions into Equation 3 gives the solution to

L(u) = 0 in B. Therefore, only knowledge of the function on the boundary is

necessary to find the functional value at any interior point.

The numerical solution to Equation 4, and subsequently Equation 3,

can be effected by first descretizing thE boundary curve into N segments,

i.e. ri, i=1,2,3...N. Next, the functions u(Q) and 2!(Q) are approximated by
6n

suitable polynomials over each segment. In this report u(Q) and -(Q) are

approximated by zero order polynomials, that is, u(Q) and -n(Q) are assumed

constant over each boundary segment. The development for higher order poly-

nomials is similar and is given by Brebbia (Reference 2). Based on the

aforementioned assumptions Equation 4 can be written as

N1  N2

-cu(P) - z u(Qi ) fr-(PQi)dki + 6n(Qj) fr (P'Qi)d.i = Y(P) (5)
1 i1

3
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with

N N
Y(P) = + E f(Qi) Ir -g(PQi)di - i1 g(Q i ) If 2G(PQi)d Xi

1=111

N

+ Z f *(P,Qi)G(P,Qi)daI
i=1 B

and, therefore can be reduced to

du

[A - IC]{u} + [M]{I-)= (Y} (6)

where

0

o an2
0 1

an 2

{u = g }=
UN2 3

UN.1
u N -

UN 0
0
0

A.. = ' (PQidi and Mij = f G(PjQi)dli;i, r 1  br 2

where I is the identity matrix, N, and N2 are the number of nodes where

and u are unknown, respectively. Since {u} has zero elements in the positions
Bu

where {-=} has non-zero elements and vice versa, Equation 6 can be reduced to

[N - IC + M]{x} = (y), (7)

4
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with anl
au

an2

{x} = N-d

unNd+ 1

uN

Equation 7 represents a system of N equation for N unknowns. Upon

solving for x Equation 3 can be used to find u(p) at any interior point. A

four point Gauss-Legrendre numerical quadrature was successfully used to

evaluate the off diagonal elements of A and M. This integration scheme was

also used to find the solution at interior points.

The chief difficulty encountered when implementing this numerical scheme

is integrating over the singularity contained in G (diagonal elements of A).

In an effort to keep the boundary element code as general as possible, this

integration is carried out numerically. The numerical procedure used follows

the approach suggested by Hornbeck (Reference 3). The interval containing the

singularity is broken into the two intervals shown in Figure 2; in this figure

the singularity is located at X1. A 24-point Gauss-Legendre numerical

quadrature is used in the interval X1 to X, + .001 and a four-point Gauss-

Legendre quadrature is used from X1 + .001 to X2. Since the zeroes of the

Legendre polynomials are clustered near the ends of the interval, subdividing

the interval of interest places the maximum number of integration points near

5
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the singularity. This approach proved very accurate in evaluating the

diagonal elements of A.

i l I
x1  x1 +.O01 x2

Figure 2. Division of the Integration Interval to Facilitate

Accurate Intregration Around a Singularity

6



SECTION III

SYSTEMS GOVERNED BY POISSON'S EQUATION

1. THE FUNDAMENTAL SOLUTION

The general governing equation to steady heat conduction problems is the

Poisson equation. The fundamental solution to this class of problems will be

derived following the approach of Greenberg (Reference 4). As a result, the

definition of a fundamental solution will be made clear.

The formal statement for this class of problem is

L(T) = V2T - =0 (8a)

where # is a function of position, and B is the general two-dimensional region

depicted in Figure 3. To complete the problem statement the mixed boundary

conditions are specified,

CIT + C 5T e on r (8b)

Y

y2

*e 

e

-- !XI 
(Y 

X (Y)

'Sx

Figure 3. Domain of Interest for the Poisson Equation

7



where, C1 and C2 are constants, and a is a function of position. If G is

defined as the fundamental solution to Equation 8a then,

fB G(V2T - *)da = fB 1G2da + fB a - fBGd (9)

Integrating the first term on the right-hand side yields

-2. Yl xY)2G

= f EGxaT Jgox2(Y)dy + IBT 2 da'JB ax2  Y2 U X~(){x

Referring to Figure 3, dysin~d. = n-id.; therefore,

8=T dxdy 2 8G 8G 2T 1G

y-ndi + fBT - a (10)
B ax2  r x ax2

similarly,

f1: GL =' a EC8 - Tfy]Jend± fT-=-- a 1 11)
B ay r e 8Y.

Substituting Equation 10 and 11 into Equation 9, noting

that V2T-p = 0, yields

0 = f [G8T - T ld + f Ga+ f TV2Gda (12)
r bn B B

Now, if 2G 6(r )where r defines the position of any point in B, then

T(o) = - T fGda

L il G-)dt- B
I'I



This result is identical to Equation 3 for arbitrary mixed boundary

conditions. In general the last integral in Equation 12 is of the form

f TL*(G)da
B

where L* is the adjoint of L. In this case L is self adjoint, that is

L = L*. The preceding paragraphs yield the conditions on G and

the definition of the fundamental solution. Stated mathematically

V2G = 6(r-Eo )

Replacing the delta function by a delta sequence and writing the Laplace

operator in polar coordinates, the conditions on G can be written as

1 5 r G) kl~m ke-kr
2

r r ~

where r = Jrrl= ((x - X 0)2 + (Y-Y)2

If .r(O) is finite, then,

1 im 1 1 e'-kt 2

G = Inr + i 1 - t t
r

Since the second term goes to zero in the limit, the fundamental solution to

systems governed by Poisson's equation (which includes Laplace's equation) is

given by
1

G = lnr (13)

At this point a distinction between the fundamental solution and the

Green's function should be made.
9



GF = G + GB.

Here, GF is the Green's function to the governing equations and boundary

conditions; G is the fundamental solution. GB is a function added to the

fundamental solution to guarantee that the Green's function satisfies the

boundary conditions necessary to make the first term in Equation 12

vanish. This term vanishing gives the direct solution to Equation 8a as

T(ro) = f GFd a
B

Greenberg (Reference 4) gives a more detailed discussion on this distinction.

2. IMPLEMENTATION OF THE FUNDAMENTAL SOLUTION
With the fundamental solution derived, the system defined by Equation 6

can be further specified. First the constant c, produced by the limit process

of Equation 4, must be found. After substituting the fundamental solution

into a condensed form of Equation 4, the limit looks like

lim u(p) = u2 lim f I i d-- u(Q) 1 i m f rd-- 1 lim f o(p,Q)lnr da (14)
p+P 211 P pP r p+P r p+P

The evaluation of the first term on the right-hand side yields

lim f.ldl= 1 im [ f 1-d + f ldi]

p+p r C+0 - r

where e is the radius of a small semicircular path circumventing the

singularity on the boundary. In the limit

li m f I dl = f I dl +
p+P r rr

10



therefore, the contribution due to the singularity at r = 0 is i. The second

integral in

lim f lnrdt = uIr [ f lnrdI + f lndI]
p P r £40 r-C

The second term on the left-hand side can be evaluated as

lir [elnc- 1] =0;

£40

hence, the contribution due to the singularity is zero. Since this is also

true for the surface integral in Equation 14, its evaluation is omitted.

The substitution of these integrals into Equation 4 reveals that c = 1/2.

The system of Equation 7 is now explicit, that is

AM = f Tnd i

Hji 2T -m rd i

r2

c 1/2 and r 2 77(xi - xj) + (Yi yj)2

The implementation of system 7 (Equation 7) is best described through

the use of Figure 4. Each row in system 7 (Equation 7) is the result of

placing the source point (xj, yj) at a node position on the boundary, then

integrating its influence around r. The source point is then moved from

node to node until the circuit is complete. The next two sections give

examples of the implementation of this fundamental solution in the boundary

element method.

11



node

(Xi Yj)

Figure 4. General Two-Dimensional Discreted Domain

3. STEADY HEAT CONDUCTION THROUGH AN INFINITE RECTANGULAR PRISM

The steady heat conduction in an infinite rectangular prism is governed

by the two-dimensional Laplace's equation. The domain in this example is a

square with a non-dimensional length of 6. Figure 5 gives the domain, the

boundary conditions and the grid employed in the solution.

Y

~dT

T= -0

5%, 6.0 I

. T : 0.0

T =300.0 v2T= 0

\..,.~

dT - 0.0 6.0

dn

Figure 5. Discretized Square Domain With a Twelve-Point Grid
(Laplace Operator) 12

- i * -. :.V ~ *~ ~ -. ~* ~ ~*~~** 12



Since the normal derivative is not well defined at the corners, nodes

are not place in those locations. Jawson, et al.(Reference 5) discusses

rounding the corners, Costable (Reference 6) discusses the use of Mellin

transforms, and Liu and Sutton (Reference 7) discuss a double corner node

method to negate the errors introduced by corners.

In this case, and all of the following cases, the material constants

are unity. Table 1 presents numerical results for eight representative

locations in the domain.

TABLE 1. STEADY TEMPERATURE DISTRIBUTION IN A SQUARE

X Y B.E.M. Analytical

2 2 200.54 200.0

2 3 200.40 200.0
2 4 200.54 200.0

5 200.79 200.0

3 2 150.01 150.0

3 3 150.01 150.0

3 4 150.01 150.0

3 5 149.96 150.0

4. STEADY HEAT CONDUCTION THROUGH AN INFINITE RECTANGULAR PRISM WITH
A UNIT HEAT SOURCE

The addition of a unit heat source results in a Poisson governing

equation. This section illustrates the solution to a simple steady non-

homogeneous partial differential equation. In this case, the surface

temperatures are zero. The same 12-point grid was also used in the solution

to this problem. Table 2 gives numerical results at the 8 representative

points.

13
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TABLE 2. STEADY TEMPERATURE DISTRIBUTION IN A SQUARE WITH HEAT SOURCE

X Y B.E.M. Analytical

2 2 2.175 2.172

2 3 2.399 2.397

2 4 2.175 2.172

2 5 1.442 1.436

3 2 2.399 2.397

3 3 2.654 2.652

3 4 2.399 2.397

3 5 1.520 1.521

414
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SECTION IV

SYSTEMS GOVERNED BY THE NON-HOMOGENEOUS MODIFIED HELMHOLTZ EQUATION

1. THE FUNDAMENTAL SOLUTION

The remaining five systems, either directly or via the Laplace transform,

are governed by the non-homogeneous modified Helmholtz equation. The general

problem statement is as follows:

7 "T - kT = 1 (15a)

with boundary conditions

+ C - (15b)

where CI and C2 are constants and 0 is a function of position. Following the

definition of the fundamental solution given in Section 3, and noting Chat the

modified Helmholtz operator is self adjoint, gives the equation for the

fundamental solutions as

V2G - k2G - 6(x - xO , y - yo) (16)

If the Laplacian is written in polar coordinates, the stretching p = kr is

introduced and G is restricted to a function of r only, Equation 16 reduces

to a zero order modified Bessel equation.

" 2 62G aG 2

p + p. - p G = p- po) (17)

15
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Since G should be singular at r = 0, the desired solution to Equation 17 is

the zero order modified Bessel function of the second kind.

G = C3Ko(kr)

The constant C3 is a measure of the strength of the singularity at r = 0. It

can be evaluated by substituting G into Equation 17 and integrating over an

arbitrarily small disk encompassing the singularity.

C3 lim f V2K (kc)da - C lim k2K (k c)da = lim f 6(c)da3 -*J B 03c-eQ B 0c-PQ B

By definition, the right-hand side is unity. By noting Ko(kr) = - ln(kr)

for Ir < c, the second integral on the left-hand side evaluates to

- C3xk3[(kr) 2 ln(kr)-1/2(kr)2], and in the limit goes to zero. Since G

is a function of r only, -2E is the only non zero normal derivative.

C3 lim f V2K0(kc)da= - lim I C3k Kl(kc)dl
,,- '0B C-e0

For Ir < e, Kl(kr) = 1/kr; therefore, this integral evaluates to

Hence, C3 = 1/2 and the fundamental solution to the general modified Helmholtz

equation is

G K (kr) (18)

Before proceeding with the numerical procedure outlined in Section II, the

constant c of Equation 4 must be determined. Since this process Is identical

to that in Section III, the details are omitted. For piecewise smooth surfaces

and G - -1/2 xko(kr), c - 3/2. Having found the fundamental solution and c,

16



boundary element methods can now be used in the solution to a more complex

class of heat conduction problems.

As an aside, the fundamental solution in Equation 18 differs from that

of Rizzo and Shippy (Reference 8) by a negative sign. In their case, c = 1/2.

The reason for the difference is in their approach to finding the fundamental

solution. They follow Boley and Weiner (Reference 9) in that Rizzo and Shippy

find the solution to the conduction equation when subjected to a delta

function heat source. They then Laplace transform the conduction equation

to get the modified Helmholtz equation and Laplace transform the solution to

get the fundamental solution. Both fundamental solutions give identical

temperature distributions.

*2. STEADY HEAT CONDUCTION THROUGH A THIN RECTANGULAR PLATE

Steady heat conduction through a thin plate is the most elementary case in

the Helmholtz operator class. It is steady, homogeneous and the boundary

conditions are constant.

V2T - T = 0,

T =1 on r.

A twelve-point grid is used in the solution to this problem. Figure 6 shows

the domain and boundary conditions and, again, all material constants are

* unity. The results are given in Table 3.

17



y

T = 0.0

1.0 •

T =0.0 v2T - T =0 T 0.0

I I '_ _ _ _ X

T = 1.0 1.0

Figure 6. Discretized Square Domain With a Twelve-Point Grid
(Helmholtz Operator)

TABLE 3. STEADY TEMPERATURE DIS',RIBUTION IN A THIN RECTANGULAR PLATE

X Y B.E.M. Analytical

.2 .2 .4454 .4439

.2 .3 .2928 .2992
.2 .4 .1991 .2056
.2 .5 .1382 .1423

.3 .2 .5499 .5404

.3 .3 .3869 .3853

.3 .4 .2717 .2731

.3 .5 .1902 .1921

18
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3. TRANSIENT HEAT CONDUCTION THROUGH AN INFINITE PRISM OF CONSTANT
CROSS SECTION

The problems discussed hereafter fall under the modified Helmoltz operator

class via the Laplace transform. In this section, the Laplace transform

approach to boundary element methods is introduced. First, the heat conduction

through circular and rectangular prisms (both with unit temperature on the

boundary) is discussed. Then, the problem of constant heat production in an

infinite cylinder is discussed. Finally, the problem of heat conduction from

an infinite circular prism with heat radiated from its surface is discussed.

All the numerical solutions are compared to the analytic solutions given by

Carslaw and Jaeger (Reference 10).

Before proceeding with numerical examples, the corresponding transform

domain system must be developed. The general heat conduction equation is

stated as

and - 7t (19a)

v and

CT + C2 an e (19b)

where C1 and C2 are constants, and is a function of position and time.

Following Rizzo and Shippy (Reference 8), the Laplace transform of Equation

19a and boundary conditions Equation 19b yields

kV2T- sT 0 (20a)

and

C T T E-e (20b)
1 T 2 -n

where T signifies the Laplace transform of T and s is the Laplace transform
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parameter. In Equation 20, it is assumed T(O,0 - 0. Notice Equation 20a

is identical to Equation 15 with 1 0 and k2 - s/k. The frequency domain

system can then be solved by using the fundamental solution defined by equation

18. The time domain solution can be retrieved through the inverse Laplace

transform. In each of the following cases, the least square method of Schapery

(Reference 11) is used to perform the inverse Laplace transform. Rizzo and Shippy

(Reference 8) also give a complete discussion of this method. In their paper, Rizzi

and Shippy use conditions on the frequency response for large frequency and on the

time response for small time to find the steady state constants. The accuracy

of this method seems to be better when the steady state constants are found

numerical ly.

4. HEAT CONDUCTION THROUGH INFINITE PRISMS OF UNIFORM CROSS SECTION
WITH UNIT SURFACE TEMPERATURE

The solution to transient heat conduction through an infinite square prism

is given. In the time domain the surface temperature is unity, this transforms

to 1/S. The frequency domain problem statement is

V2T- sT = 0 (21a)

and

T 1 1/s on r. (21b)

An evenly spaced twenty point grid is used in the solution of this problem.

Figure 7 gives the time responses found with Equation 20.

Next, the solution to heat conduction through an infinite circular prism

with unit surface temperature is presented. Equations 21 also given this

problem, in this case however, an evenly spaced 24-point grid was used.

Figure 8 presents the time response for a representative point in the domain.

The accuracy for all other points is comparable.
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5. HEAT CONDUCTION THROUGH AN INFINITE CIRCULAR CYLINDER WITH CONSTANT

HEAT PRODUCTION

The next step in complexity is produced by the addition of constant heat

production. Here, the initial and surface temperatures are zero; heat is

produced at a unit rate per unit volume. The frequency domain governing

equation is v2T - sT= -1

with
T= 0 on r =1

This example shows the B.E.M. can accurately give the solution to frequency

domain, non-homogeneous modified Helmholtz equation and hence also give the

time response. The same domain and 24-point grid is used in this solution.

Figure 9 gives the time response.

6. HEAT CONDUCTION THROUGH AN INFINITE CIRCULAR CYLINDER WITH RADIATION

AT THE SURFACE

This final example discusses the heat conduction produced in a cylinder

when heat is radiated from its surface. This example is different in that

functional values for the boundary conditions are not explicit, rather a

relationship between the temperature and its normal derivative is given.

V2T- sT= 0 (22a)

and

6 + T =1(22b)

Substituting boundary conditions Equation 22b into integral Equation 4 gives a

boundary element equation in the form of

=2T T f (- + G)dt "- f GdtL

r r

23
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Equivalently, the fundamental solution, Its normal derivative and the boundary

conditions can be redefined as

-.-.---- + G = G

and

6T i-- = - on r

where G is the fundamental solution to the modified Helmholtz equation. This

reformulation precipitates the use of the boundary element method. Again, the

same domain and grid were used in the solution to this problem. The time

response is given in Figure 10.
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SECTION V

DISCUSSION

As seen in the previous examples, the accuracy of the constant element-

boundary element method is excellent for both steady and transient problems.

However, this approach gives poor and sometimes spurious results for complex

geometries. As shown by Cruse (Reference 12), the accuracy of the B.E.M. can

be dramatically increased by employing linear elements. For simple goemetries

the small improvement in accuracy produced by linear elements does not justify

the increase in computer time.

In general, for a given accuracy level the B.E.M. solutions are much more

efficient than finite difference or finite elements solutions (Reference 13);

however, the surface integral introduced by non-homogeneous governing

equations can greatly increase the run time of a boundary integral solution.

To combat this problem, it is important to take advantage of symmetry when

ever possible. The run time of the example presented in subsection IV.5 was

reduced up to 85% when symmetry considerations were invoked.

The chief purpose of this report is to explore the boundary element

solution to transient problems. Hence, it is important to note that the

time dependent solutions consistently breakdown for large time. This is

exemplified by the solution to heat conducting through an infinite square

prism for large time 'Figure 11). Rizzo and Cruse (Reference 14) point out

that this behavior is attributable to the inverse Laplace transform. Bellman,

et al. (Reference 15) shows that numerical inverse Laplace transforms

inherently grow unstable for large time. For short duration events, such as

elastic or plastic wave propagation, the instability does not present a

problem (Reference 16). In the case of long duration events, such as creep,
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a time dependent fundamental solution can be derived (Reference 17). This

approach is not as desirable as it might seem since the B.E.M. solution

must be evaluated at each time step, hence, greatly increasing computer time.

The building block fashion in which this report is presented is intended

to aid in the development of transient boundary element codes by providing

increasingly more difficult test cases. To this purpose, it is suggested

that the two-dimensional codes given by either Crouch and Starfield (Reference

18) or Brebbia et al. (Reference 19) be used as a starting point. Both these

codes can be expanded to accommodate non-homogeneous, time dependent problems.

29
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SECTION VI

CONCLUSIONS

The success of the boundary element method in the solution of two-

dimensional transient heat conduction problems has been reaffirmed. A method

to find the fundamental solution is presented: also a distribution between the

fundamental solution and Green's function is discussed. The important numer-

*i ical considerations lie in the numerical integration around the singularity

of the fundamental solution and in the instability of the inverse Laplace

transform for large time. The accuracy and efficiency of the boundary element

method in the solution of linear transient governing equations represent a

significant improvement over other available numerical schemes.
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